89 research outputs found

    A New European Plant-specific Emission Inventory of Biogenic Volatile Organic Compounds for Use in Atmospheric Transport Models

    Get PDF
    We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC), on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004¿2005 averaged annual total biogenic volatile organic compound (BVOC) emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory.JRC.H.2-Climate chang

    Harmonized Methods for Assessing Carbon Sequestration in European Forests

    Get PDF
    The MASCAREF (Study under EEC 2152/2003 Forest Focus regulation on developing harmonized methods for assessing carbon sequestration in European forests) project was conducted by a consortium of 10 European institutions coordinated by IFER ¿ Institute of Forest Ecosystem Research, Czech Republic. The overall objective of this project was to contribute to the development of a monitoring scheme for carbon sequestration in forests of the European Union (EU). Specifically, the project aimed at i) strengthening and harmonizing the existing national systems to better meet the requirements of international monitoring and reporting of greenhouse-gas (GHG) emissions and sinks and ii) improving the comparability, transparency and accuracy of the GHG inventory reports of the Land use, land-use change and forestry (LULUCF) sector of the EU Member States, as implemented in the EC Monitoring Mechanism. This project represents a step towards addressing the challenges of GHG inventories and the reporting under the United Nations Framework Convention on Climate Change (UNFCCC) and its Kyoto protocol related to forest land and forest activities. Reflecting the heterogeneity in land use, natural conditions and monitoring data availability, there is a wide variety in greenhouse gas reporting practices within the European Community, which becomes clearly apparent from an overview of the current GHG reporting practices prepared by MASCAREF. The particular tasks of the project were based on available data from regional, national and EU-wide projects and relevant activities that took place over the last decade. The project elaboration was conducted within several major tasks, followed by selected regional case-studies. Firstly, the currently available data and methodological approaches to estimate carbon stock and carbon stock change for emission inventories were analyzed. Secondly, the project conducted an analysis of ICP Forests health monitoring and Forest Focus programs. Similarly, it assessed the potential of utilizing data from the European National Forest Inventories for the purpose of emission inventory under UNFCCC and the Kyoto protocol. Related to this, the JRC AFOLUDATA website on biomass functions and conversion/expansion factors http://afoludata.jrc.ec.europa.eu/index.php/public_area/home) was complemented by adding new factors from the European member states. Also, the methodologies to aggregate the forest carbon stock data based on the National Forest Inventory plots to a 10x10 km grid were explored. Finally, several of the above tasks were elaborated and/or applied in case studies in the selected regions of Europe. The MASCAREF project fulfilled its main objectives and its results should facilitate a further development of monitoring schemes for carbon stock change assessment in forests of the European member states, hopefully leading to an improved GHG reportingJRC.DDG.H.2-Climate chang

    A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models

    Get PDF
    We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC), on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004–2005 averaged annual total biogenic volatile organic compound (BVOC) emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory

    Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest

    Get PDF
    To investigate the climate impacts on the different components of ecosystem respiration, we combined soil efflux data from a tree-girdling experiment with eddy covariance CO2 fluxes in a Mediterranean maritime pine (Pinus pinaster) forest in Central Italy. 73 trees were stem girdled to stop the flux of photosynthates from the canopy to the roots, and weekly soil respiration surveys were carried out for one year. Heterotrophic respiration (RH) was estimated from the soil CO2 flux measured in girdled plots, and rhizosphere respiration (RAb) was calculated as the difference between respiration from controls (RS) and girdled plots (RH). Results show that the RS dynamics were clearly driven by RH (average RH/RS ratio 0.74). RH predictably responded to environmental variables, being predominantly controlled by soil water availability during the hot and dry growing season (MayeOctober) and by soil temperature during the wetter and colder months (NovembereMarch). High RS and RH peaks were recorded after rain pulses greater than 10 mm on dry soil, indicating that large soil carbon emissions were driven by the rapid microbial oxidation of labile carbon compounds. We also observed a time-lag of one week between water pulses and RAb peaks, which might be due to the delay in the translocation of recently assimilated photosynthates from the canopy to the root system. At the ecosystem scale, total autotrophic respiration (RAt, i.e. the sum of carbon respired by the rhizosphere and aboveground biomass) amounted to 60% of ecosystem respiration. RAt was predominantly controlled by photosynthesis, and showed high temperature sensitivity (Q10) only during the wet periods. Despite the fact that the study coincided with an anomalous dry year and results might therefore not represent a general pattern, these data highlight the complex climatic control of the respiratory processes responsible for ecosystem CO2 emissions. © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Characterizing Ecosystem-Atmosphere Interactions from Short to Interannual Time Scales

    Get PDF
    Characterizing ecosystem-atmosphere interactions in terms of carbon and water exchange on different time scales is considered a major challenge in terrestrial biogeochemical cycle research. The respective time series are now partly comprising an observation 5 period of one decade. In this study, we explored whether the observation period is already sufficient to detect cross relationships of the variables beyond the annual cycle as they are expected from comparable studies in climatology. We explored the potential of Singular System Analysis (SSA) to extract arbitrary kinds of oscillatory patterns. The method is completely data adaptive and performs an 10 effective signal to noise separation. We found that most observations (NEE, GP P , Reco, V P D, LE, H, u, P ) were influenced significantly by low frequency components (interannual variability). Furthermore we extracted a set of nonlinear relationships and found clear annual hysteresis effects except for the NEE-Rg relationship which turned out to be the sole linear relationship 15 in the observation space. SSA provides a new tool to investigate these phenomena explicitly on different time scales. Furthermore, we showed that SSA has great potential for eddy covariance data processing since it can be applied as novel gap fillingapproach relying on the temporal time series structure only.JRC.H.2-Climate chang

    Modeling Gross Primary Production of Agro-Forestry Ecosystems by Assimilation of Satellite-Derived Information in a Process-Based Model

    Get PDF
    In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale

    Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy

    Get PDF
    Rice paddy fields are one of the greatest anthropogenic sources of methane (CH4), the third most important greenhouse gas after water vapour and carbon dioxide. In agricultural fields, CH4 is usually measured with the closed chamber technique, resulting in discontinuous series of measurements performed over a limited area, that generally do not provide sufficient information on the short-term variation of the fluxes. On the contrary, aerodynamic techniques have been rarely applied for the measurement of CH4 fluxes in rice paddy fields. The eddy covariance (EC) technique provides integrated continuous measurements over a large area and may increase our understanding of the underlying processes and diurnal and seasonal pattern of CH4 emissions in this ecosystem. For this purpose a Fast Methane Analyzer (Los Gatos Research Ltd.) was installed in a rice paddy field in the Po Valley (Northern Italy). Methane fluxes were measured during the rice growing season with both EC and manually operated closed chambers. Methane fluxes were strongly influenced by the height of the water table, with emissions peaking when it was above 10–12 cm. Soil temperature and the developmental stage of rice plants were also responsible of the seasonal variation on the fluxes. The measured EC fluxes showed a diurnal cycle in the emissions, which was more relevant during the vegetative period, and with CH4 emissions being higher in the late evening, possibly associated with higher water temperature. The comparison between the two measurement techniques shows that greater fluxes are measured with the chambers, especially when higher fluxes are being produced, resulting in 30% higher seasonal estimations with the chambers than with the EC (41.1 and 31.7 gCH4 m−2 measured with chambers and EC respectively) and even greater differences are found if shorter periods with high chamber sampling frequency are compared. The differences may be a result of the combined effect of overestimation with the chambers and of the possible underestimation by the EC technique.JRC.H.7-Climate Risk Managemen

    Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

    Get PDF
    Surface albedo is a key parameter in the Earth's energy balance since it affects the amount of solar radiation directly absorbed at the planet surface. Its variability in time and space can be globally retrieved through the use of remote sensing products. To evaluate and improve the quality of satellite retrievals, careful intercomparisons with in situ measurements of surface albedo are crucial. For this purpose we compared MODIS albedo retrievals with surface measurements taken at 53 FLUXNET sites that met strict conditions of land cover homogeneity. A good agreement between mean yearly values of satellite retrievals and in situ measurements was found (R(exp 2)= 0.82). The mismatch is correlated to the spatial heterogeneity of surface albedo, stressing the relevance of land cover homogeneity when comparing point to pixel data. When the seasonal patterns of MODIS albedo is considered for different plant functional types, the match with surface observation is extremely good at all forest sites. On the contrary, in non-forest sites satellite retrievals underestimate in situ measurements across the seasonal cycle. The mismatch observed at grasslands and croplands sites is likely due to the extreme fragmentation of these landscapes, as confirmed by geostatistical attributes derived from high resolution scenes
    corecore